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Probability Distribution Connected with Structure Amplitudes of Two Related Crystals. 
IV. The Distribution of the Normalized Difference* 
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The theory developed in the earlier parts of this series concerning the probability distribution of structure 
amplitudes is particularly applicable to the case of the 'observed' and 'calculated' structure factors, 
during the initial stages of a crystal structure analysis when only a part of the structure is known. In 
such a case the proper type of difference variable to consider is the normalized difference variable 
~--(IFul/aN-IFPI/aP) (where a~r and a~, are the mean square values of IF~I and IFvlrespectively). The 
distribution of 6 is derived, as in previous parts, for the related and unrelated cases and is found to have 
all the expected symmetry properties like the normalized product and quotient variables considered in 
parts II and III respectively. 

Based on the distribution P(6), a new reliability index R1, termed the normalized reliability index, is 
suggested for use in crystal-structure refinement when only a part of the structure is known. R1, defined 
Rx =X [IFxl- IFvl/al I/X IF~I, tends to the conventional reliability index R when P tends to N. RI has 
many desirable properties which makes it superior to R when P is less than N. 

1. Introduction 

The basic problem considered in parts I to III of this 
series (part I: Ramachandran, Srinivasan & Sarma, 
1963; part II: Srinivasan, Sarma & Ramachandran, 
1963a; part III: Srinivasan, Subramanian & Ramach- 
andran, 1964; see also Ramachandran & Srinivasan, 
1963 and Srinivasan, Sarma & Ramachandran, 1963b) 
was to work out the probability distributions connected 
with structure amplitudes [F~v] and [FPI of two crys- 
tals containing N and P atoms respectively. Two lim- 
iting situations were considered, one in which P out 
of the N atoms in the first crystal occupied positions 
identical with those of the corresponding P atoms of 
the second crystal (termed the related case) and the 
other in which the P atoms and the N atoms occupied 
completely different positions (termed the unrelated 
case). The results thus obtained formed the basis for 
suggesting a number of statistical criteria for use in 
testing the 'relatedness' or 'isomorphism' between two 
crystals. 

The purpose of this paper is mainly twofold. First, 
it may be mentioned that there is another but equival- 
ent interpretation of the mathematical results obtained 
earlier which is particularly significant. It arises from 
considering P and N not as corresponding to two dif- 
ferent crystals but as a part P and the whole N of the 
same crystal, which would correspond to the 'related 
case' considered earlier. (In fact, this was how the 
whole problem came to be considered in part I, al- 
though the emphasis in the earlier parts has been main- 
ly on applying the results to a pair of crystals.) Thus, 
one could take I FPI to represent the calculated struct- 
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ure amplitude (say ]Fel) corresponding to a part con- 
sisting of P atoms, which have been located initially 
during a structure analysis, and [FN[ to  correspond to 
JFo[, the observed structure amplitude of the whole 
crystal (the errors of observation are assumed to be 
negligible). Thus, it becomes possible to apply the 
results directly for the comparison of [Fo] and [FeJ dur- 
ing the different stages of analysis of a crystal structure, 
when more and more atoms are located. It may be 
perhaps emphasized that the application of the theory 
to this case has a greater validity than to the case of 
a pair of crystals, since the latter very rarely possess 
identical cell dimensions, as is implicitly required by 
the theory. The 'unrelated case' clearly would cor- 
respond to the case in which the assumed positions of 
the P atoms are entirely different from their true pos- 
itions. 

Secondly, the theoretical treatment of the problem 
and the expressions for the distributions of different 
types of variables turn out to be quite elegant when 
the two variables Fly and Fp are taken individually in 
their normalized forms, namely YN = [FN]/tTN and yp = 
IfPI/aP, Thus, the quotient variable, v=yMyP con- 
sidered in part III, is in the correctly normalized form. 
It showed highly symmetric properties. For instance, 
the distribution of v and its reciprocal 1/v were ident- 
ical in form and also for any given value of a 2, the 

oO 

integral fl P(v)dv always had the value½. These results 

were not true for the direct quotient of the two struct- 
ure amplitudes, IF~vl/IFPI. So also, the product variable 
(Z=yNyp) was used in the normalized form (part II), 
although in this case no symmetry properties could be 
demonstrated as in the case of the normalized quotient 
variable. Also, both in the case of P(v) and P(Z), it 
was found that the expression for the unrelated case 
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could be obtained from the related case by substituting 
o~x =0.  

It may be mentioned that the difference variable 
considered in part I was defined as w = ( I F M -  [Fe)l/atv 
and is obviously not in its properly normalized form. 
In view of the above it would be of particular interest 
to consider the normalized difference* variable 

a = y l v - y e .  (I) 

This paper is concerned with working out the distrib- 
utions P(8). As expected, P(6) is found to have all the 
symmetry properties of P(v) and P(Z). So also, as will 
be shown in part V, in which the entire problem is 
considered in its general aspect, namely when the P 
atoms have also finite errors in their coordinates, very 
elegant expressions are obtained for the distribution 
functions with the normalized difference variable 8 
which is introduced here. 

One important result that follows from considering 
the distribution P(O) is the possibility of a new reli- 
ability index (termed the normalized reliability index) 
for use in crystal structure refinements when only a 
part of the atoms is known for calculating the structure 
factors. The new index is found to have a number of 
desirable properties which make it superior to the con- 
ventional one. 

2. The probabil ity distribution of  6 

Non-centrosymmetric case 
We require the distribution of f i=y~-ye .  Consider 

first the non-centrosymmetric case. We first obtain the 
conditional distribution P2(yN; yP) for the normalized 
variable y~v. This is easily done by applying the 
appropriate transformations in the expression for 
Pz(IFNI; IFel) available in part I (expression 4). Thus, 

P2(Ylv; Ye) 

[~[ is positive. Changing the variable of integration to 
y~,=ye-]SI  we see that x=2ye(ye+g)/a~=2(y'l,+ 
]~l)y'e/a~, which is identical in form with 4(a) for 6 pos- 
itive, and the limits are now from 0 to ~ .  

Similarly, for the unrelated case, the distribution 
P(6) may be derived from the corresponding formulae 
in part I (details not given here) and it takes the form 

P(6) =2  exp ( - 6  2) 2yp(yp+6) 
0 or 161 

x exp { -  [2ye(ye+6)]}dye .  (5) 

It is readily verified that this expression is obtained 
from that of the related case (4) above, by substituting 
cr~ = 0 (a~ = 1) in the right hand side of (4). 

Fig. 1 shows a family of curves of P(6) for different 
values of a~. 

Centrosymmetric case 
From expression (1 1) of part I we obtain 

1 
P2(YN; YP) -- [exp {--(yN-t-alyv)2/2a~} 

1/27t o~ 

+ exp {-(y~-,:hyp)Z/2er~}]. (6) 
We have 

1/T 
Ps(Ye) = VZ-exp (-)~p/2).  (6a) 

Hence, substituting in (3) for P2(y.~'; yP) and Pl(ye) 
from (6) and (6a), we obtain 

1 
I ~° exp {-y~,/2} 

x [exp l - [ 6  +ye(1 + o',)] =} 

+ e x p  { - [6+ye (1 -aa ) ]2} ]  dye (7) 

=(2yNIcr~)Io[2thy~vyP/tr~] exp{ --[(y~+~}~/~)]} 

and Px(YP) is given by 

ex(yv) = 2yp exp ( -  y~). 
Thus 

P(fi) = P2(yP+6;  yP)Pl(yp)dye. 
o or 1~1 

(2) I 

(2a) ~ . 9  

(3) pt~ ~ o ~  
(YP) 
1 

0.5 

(4) 

(4a) 

Substituting the expressions for P2 (YN; YP) and PI(YP) 
from (2) and (2a) in (3) we obtain P(8) in the form 

S P(~)--2 exp ( -  82 /a~)  xexp(-x)Io(chx)dye 
0 or lal 

where 
x= 2yp(yp + O)/~r~ 

and the lower limits 0 and 161 apply respectively to 
positive and negative values of& That the function P(O) 
above is symmetric about 6 = 0 can be readily seen as 
follows. When ~ is negative, we have ~ = -  161 where 

{14 -'J-O -1.6 -1'2 -41 - ' 4  0 

* Hereafter, we shall refer to w as the simple difference to 
distinguish it from the normalized difference 8 defined here, 

Fig. 1. Probability distribution function P(6) for the non- 
centrosymmetric case, corresponding to al 2 = 0, 0.5, 0-8 and 
0.9. 



R. S R I N i V A S A N  AND G. N. R A M A C H A N D R A N  1005 

where again, as before, the lower limit is 0 or IOl accord- 
ing as c~ is positive or negative. 

The integral may be expressed in terms of error 
functions. We shall first work out the result for pos- 
itive 6, so that the range of integration is from 0 to m. 
Using the abbreviations 

a=6/tr2V2, kl=(l+6,)/tr2]/2, kz=(1-0"1)/a21/2 (8) 

the required integral is 

exp ( - -a0  
I°°[exp {-[y~, (k~+½) + 2ak, ye]} 

7~7 2 dO 

+exp {-[yZe(k~ +½)+ 2ak2ye]}]dye . (9) 

The two terms under the integral sign are similar. Tak- 
ing the first one 

f :  exp{-[Y2e+(k~+½)+2aklyp]}dYP (10) 

= exp { (~-125r--½) } f :  exp {-[yol/-(-/~q--~) 
a2k21 

+ak.1/ ~l/D-~, +½l~)dyp (11) 
exp { a2k2 

__ (k~+½) , ~ exp(_xZ)dx 
V (k 2 + ½) ~)ak,/[/k-~-+ ½ 

where 

(12) 

x=yp ([/(-~1+~Z)2) +aka/fk~Yr--½ . (13) 

Using the result 

S 2 exp ( -  tZ)dt, (14) erf (x) = - -~  o 

(12) reduces to 

[/nexp{ -a2k2 [ 2  } 1 ~erfakl] (15) (k~+½).  

A similar expression is obtained for the second term 
under the integral sign in (9), with kz replacing kl in 
the above. 

'0.9 

' 0 , 8  

' " 5  

! o 

- 2 -4  - 2 "0  -1"6 -1"2 - - ' 8  - - ' 4  0 -4 .8 1.2 1"6 2 .0  2 .4  

8 

Fig.2.  Probabi l i ty  dis tr ibut ion func t ion  P(6) for  the centro-  
symmetric case corresponding to aa2=O, 0.5, 0"8 and 0"9. 

After substituting for kl, k2, a etc. from (8) and sim- 
plifying, we obtain finally 

1 { e x p ( - - ~ 2 ) / 4 ( l + a l ) ( 1 - e r r  6 ) 
P(6) = 2]/----~ l / ( l+  a~) 21/~--~1 

+ exp (-c~2)/4(1- or1)(1-  er f c~ } ) (16) 
l /~ -- O'1 2V(1 +aa) -  " 

It may easily be verified by going through the above 
process that, when 3 is negative, the same expression 
as (17) is obtained with the only change that 6 is repla- 
ced by [~1. The function P(O) is thus symmetric about 

= 0, a result anticipated earlier and shown already for 
the non-centrosymmetric case. 

The expression for the unrelated case may be ob- 
tained from the corresponding expression (21) of part I 
and takes the form 

1 (1 errS) , P(6) = l - ~  exp ( -  02/4) - . 17) 

Just as in the non-centrosymmetric case, it may be 
readily verified that the right hand side of (16) for the 
related case reduces to that of (17) on putting al =0  
(c~2 = 1) .  

Fig.2 shows a family of curves of P(c~) for different 
values of a~. 

Properties of the P(6) distribution 

The following observations regarding the properties 
of the function P(O) would be pertinent, particularly 
in relation to some of the results obtained in earlier 
parts. 

It may be seen from Figs. 1 and 2 that all the curves 
of P(O) aIe symmetric about ~=0.  It follows therefore 
that 

l °-ooP(fi)d6=l °P(3)dcS=½" (18) 

This may be compared with the symmetry property of 
the quotient variable v about v = 1, namely 

I;P(v)dv= l;P(v)dv= ½ . (19) 

Corresponding to the result that the distributions 
of v and 1Iv are identical in form, the distribution of 
(y2v-yP) = 6 and (yp-y2v)= - ~  = 6'(say) are the same. 
The proof of the latter is obvious and is not given here. 

The result (18) affords us a very simple method of 
scaling the observed structure factors. Thus, it is only 
necessary to adjust the relative scale of [FNI and IFPI 
so that the number of reflexions with ~ positive should 
be equal to the number of reflexions with 3 negative 
(see § 3, for a simple method of achieving this practic- 
ally). This may be compared with the P+ test discussed 
in part I for the same purpose, in which the value of 
P+ varied with al. This is a consequence of the fact 
that the simple difference variable is not in its properly 
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normalized form. In fact, this is also reflected in the 
other properties associated with P (w). For instance, the 
curves of P(w) are asymmetric about w=0  and also 
a family of curves exists for the unrelated case for 
different values of crl and so on. 

3. The normalized reliability index 

Let us now define a reliability index (R0 between the 
normalized variables y~v and yp defined by 

R~= Xly~v-yP] Z'l}&vl/cr2v-]FPl/Gel 
S y~v =- X l&vl/oN (19a) 

From its definition, it is readily seen that 

& = (lal)/(Y~> (19b) 

so that theoretical expressions for this can be readily 
worked out in terms of the available distributions P(6) 
and P(yN). In fact, the values of (yN) are well known 
(Wilson, 1949). It is I/n/2 for a non-centrosymmetric 
crystal and l/2/n for a centrosymmetric crystal. Since 
the distributions P(6) are symmetric about d=O we 
have 

I ° <lal> = 2 aP(6)d6. (20) 
0 

For the non-centrosymmetric case, this can only be 
obtained by numerical integration using equation (4). 
However, the expression for (161) takes an elegant form 
for the centrosymmetric case. Thus, substituting from 
(16), we have 

1 {S: 6 exp[_62/4( l+a , ) ]  
<161> = - ~ -  l/(1 + ~ , )  

S 6 ]/1 --aid6 + 6 exp [--62/4(1 --oh)] erfc ~- o ~ - o'-----1 

erfc -~ ~ d6 (21) 

where 
erfc x = 1 - erf (x). (22) 

The two integrals in (21) are similar. Taking the first 
one and substituting 62/4 ~/1 + al = x, it reduces to 

21~-~iI[exp(-x, erfc(.x'~/1---4~1) /&. (23) 
Using the result (see p. 307, vol.II of Erdelyi, 1954) 

o exp (fix) erfc (a~x~)dx= ~ (a_fl)~ 1 , (24) 

(23) reduces to 

21/1 +al-1/2(1 +G~). (25) 
Similarly, the second integral in (21) reduces to 

2 V l - a l -  1/2(1-al) .  (26) 

Using (25) and (26) in (21) we have 

2 {l/q+~, + l q - ~ ,  - j,2}. (27) (161) = 1/-- ~- 

Since ( y N ) =  ~/2/n for the present case, we get 

Rl=(161)/(y~v)=l/2(1 +al )  + 1/2(1-al)  - 2 .  (28) 

The value of R~ as a function of al is shown in Fig. 3 
for the centrosymmetric and non-centrosymmetric 
cases. 

It is interesting to note that the quantity RI is closely 
related to the usual R value which is defined between 
the observed and calculated structure amplitudes, viz. 

R = -rllgN I --IFpl ]/-rlFNI. (29) 

Thus, multiplying both the numerator and denomin- 
ator of the last expression in (19) by a2v we have 

R~ = _rllFN I -IFPlaN/a~,l/Sl&vl 

=XIIFNI--IFPI/all/--rlFNI. (30) 

Thus the index R~ makes use of the differences between 
the structure amplitude IF~vl of the whole crystal and 
IFPI of a part of it, with the only difference that the 
latter is scaled up by a factor 1/al. This scaling up is 
physically understandable and in a sense justified since 
the mean square value of IFPI is less than that of IFNI. 
Thus, the scaling up ensures the equality of these 
quantities because ([Fgv}a)=(lFpl2/cr2>. Thus, the ef- 
fect of this is that not only are the structure amplitudes 
to be compared properly normalized, but the differences 
between them are also made symmetrical. It may be 
seen that as P tends to N, al --~ 1, and RI becomes 
identical with the conventional reliability index R. 

The above result also has one important practicaI 
significance. For the normalization is equivalent to 
making the average of the 'observed intensities' equal 

1"0 
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0"5 
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0 " 3 - -  
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0 "  
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0"1 0"2 0"3 0"4 0"5 0"6 0"7 0"8 0"9 1"0 

Fig. 3. The normalized reliability index R1 as a function of al 
for the centrosymmetric (C) and non-centrosymmetric (N) 
cases. 
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Fig. 4. The reliability index R as a function of trl 2 for the related 
and unrelated cases. A and C denote acentric (non-centro- 
symmetric) and centrosymmetric cases respectively. 

to that of the 'calculated ones' and this can be achieved 
even without a prior knowledge of the correct scale 
factor for Ifol or of even the value o f ~ .  What is requir- 
ed is only that the scale factor between the two is ad- 
justed by trial until the above equality is achieved. In 
this respect R1 has a distinct advantage over R, which 
necessarily requires the knowledge of the correct scale 
factor. 

It is of interest to compare further the behaviour 
of R~ and R. For convenience, R as a function of or1 
is shown in Fig. 4. It will be noticed that for the un- 
related case the value of R varies with a~ while R~ 
has a unique value, independent of gl. In fact, there is 
only a single curve for R~ as a function of cr~ for the 
related case, and the unrelated case corresponds to 
G~ =0. This result follows the corresponding result for 
the distributions, and the significance of this will be 
better appreciated in the light of the results to be dis- 
cussed in part V, where the errors in atomic coordin- 

ates are discussed. It is also noteworthy that these 
values of R1 for the centrosymmetric and non-centro- 
symmetric cases (0.828 and 0.586 respectively) are noth- 
ing but those corresponding to completely random 
structures deduced by Wilson (1950) for the case when 
all the atoms are used in structure factor calculation. 

On the other hand, the value of R for the unrelated 
case corresponds to that of Wilson, for random struct- 
ures, only in the limit P = N ,  i.e. trl= 1. For lower 
values of gl R shows a steady increase until it reaches 
the value unity when ~zl = 0. This happens both for the 
centrosymmetric and non-centrosymmetric cases. It 
arises from the fact that when ~1=0 the [FPl's are all 
zero and both the numerator and denominator in (29) 
become equal. 

For the related case, however, R starts with a value 
unity for ch--0, and decreases steadily until it becomes 
zero when trl = 1. 

The foregoing considerations clearly show the super- 
iority of R1 over R. In fact, as will be shown in part V, 
the interpretation of the results in terms of errors in 
coordinates becomes simple when one considers the 
normalized reliability index R1. All these only point 
to the importance of treating the variables in their 
properly normalized forms. 
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